Motion planning for humanoid walking in a layered environment
نویسندگان
چکیده
Motion planning is one of the key capabilities for autonomous humanoid robots. Previous researches have focused on weight balancing, collision detection, and gait generation. Most planners either assume that the environment can be simplified to a 2D workspace or assume that the path is given. In this paper, we propose a motion planning system capable of generating both global and local motions for a humanoid robot in a layered or two and half dimensional environment. The planner can generate a gross motion that moves the humanoid vertically as well as horizontally to avoid obstacles in the environments. The gross motion is further realized by a local planner that determines the most efficient footsteps and locomotion over uneven terrain. If the local planner fails, the failure is feedback to the global planner to consider other alternative paths. The implemented humanoid planning system is an interactive tool that can compute collision-free motions for a humanoid robot in an on-line manner.
منابع مشابه
A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملWalking navigation system of humanoid robot using stereo vision based floor recognition and path planning with multi-layered body image
To realize humanoid robots in unknown environment, sensor based navigation system is required as one of an essential function. This paper describes visionbased navigation system for humanoid robots, which has
متن کامل3D Vision-Based Local Path Planning System of a Humanoid Robot for Obstacle Avoidance
This paper addresses the vision based local path planning system for obstacle avoidance. To handle the obstacles which exist beyond the field of view (FOV), we propose a Panoramic Environment Map (PEM) using the MDGHM-SIFT algorithm. Moreover, we propose a Complexity Measure (CM) and Fuzzy logic-based Avoidance Motion Selection (FAMS) system to enable a humanoid robot to automatically decide it...
متن کاملEvolutionary Multi-Objective Optimization for Biped Walking of Humanoid Robot 127 Evolutionary Multi-Objective Optimization for Biped Walking of Humanoid Robot
The recent remarkable progress of robotics research makes advanced skills for robots to solve complex tasks. The divide-and-conquer approach is an intuitive and efficient method when we encounter complex problems. Being a divide-and-conquer approach, the multilayered system decomposes the problem into a set of levels and each level implements a single task-achieving behaviour. Many researchers ...
متن کاملA Unified Approach to Planning Versatile Motions for an Autonomous Digital Actor
Enabling a digital actor to move autonomously in a virtual environment is a challenging problem that has attracted much attention in recent years. The systems proposed in several researches have been able to plan the walking motions of a humanoid on an uneven terrain. In this paper, we aim to design a planning system that can generate various types of motions for a humanoid with a unified plann...
متن کامل